Outline of Animals and Plants-Based antimicrobial agents (NAA) in Antimicrobial food packaging (AFP): A new paradigm in food industry


  • Ali Raza Ishaq Government College, University of Faisalabad, Pakistan
  • Fatima Noor Government College, University of Faisalabad, Pakistan
  • Ayesha Noor Government College University Faisalabad, Pakistan
  • Iqra Farzeen Government College University Faisalabad, Pakistan
  • Iqra Afzal Government College University Faisalabad, Pakistan
  • Muhammad Ilyas Institute of Vertebrate Palaeontology and Palaeoanthropology, CAS, Beijing, China




Antimicrobial packaging, Natural Compounds, Animal Based, Plant Based Applications, Food industry


Natural compounds due to their less toxicity for human health are desired for antimicrobial food packaging. Natural compounds derived from plants, animals and microorganisms such as oils, phenols, terpenes, aliphatic compounds, aldehydes, organic acids and glucosinolates. Polyphenol around food inhibits gas exchange, moisture, flavor and other soluble transfer, hence, increase shelf life. Less use of phenols in food is enhanced by using polyphenols in the food industry, that maintain superficial expression, lowering bacterial activity at upper surfaced of vegetables, fruits and raw muscle food. From hypothetical studies, it is estimated that synthetic or artificial antibacterial agents are more beneficial as compared to the natural. Microbe’s free food is an innovative demand of the food industry and it is need of the hour to use cheaper safer and healthy ways for the preservation of food. The meat industry is dependent on the antimicrobial packaging which is necessary for the safety of the meat. Efficient packaging and antimicrobial agents are the main aspects of the best quality and safety of meat and meat products. This review gives new insight into natural compounds used for antimicrobial food packaging and the application of antimicrobial food packaging.


1. Al-Tayyar, N. A., Youssef, A. M., & Al-Hindi, R. (2020). Antimicrobial food packaging based on sustainable Bio-based materials for reducing foodborne Pathogens: A review. Food chemistry, 310, 125915.
2. Aloui, H., & Khwaldia, K. (2016). Natural antimicrobial edible coatings for microbial safety and food quality enhancement. Comprehensive Reviews in Food Science and Food Safety, 15(6), 1080-1103.
3. Amenu Delesa, D. (2018). Traditional Medicinal Plants for Industrial Application as Natural Food Preservatives. International Journal of Advanced Biological and Biomedical Research (IJABBR), 6, 1-10.
4. Andersen, B. M. (2019). Antibacterial Agents and Drug Resistance Prevention and Control of Infections in Hospitals (pp. 29-43): Springer.
5. Andrade, M. A., Ribeiro-Santos, R., Bonito, M. C. C., Saraiva, M., & Sanches-Silva, A. (2018). Characterization of rosemary and thyme extracts for incorporation into a whey protein based film. Lwt, 92, 497-508.
6. Atarés, L., & Chiralt, A. (2016). Essential oils as additives in biodegradable films and coatings for active food packaging. Trends in food science & technology, 48, 51-62.
7. Aziz, M., & Karboune, S. (2018). Natural antimicrobial/antioxidant agents in meat and poultry products as well as fruits and vegetables: A review. Critical reviews in food science and nutrition, 58(3), 486-511.
8. Benbettaïeb, N., Debeaufort, F., & Karbowiak, T. (2019). Bioactive edible films for food applications: Mechanisms of antimicrobial and antioxidant activity. Critical reviews in food science and nutrition, 59(21), 3431-3455.
9. Benbettaïeb, N., Tanner, C., Cayot, P., Karbowiak, T., & Debeaufort, F. (2018). Impact of functional properties and release kinetics on antioxidant activity of biopolymer active films and coatings. Food chemistry, 242, 369-377.
10. Bouarab Chibane, L., Degraeve, P., Ferhout, H., Bouajila, J., & Oulahal, N. (2019). Plant antimicrobial polyphenols as potential natural food preservatives. Journal of the Science of Food and Agriculture, 99(4), 1457-1474.
11. Breijyeh, Z., Jubeh, B., & Karaman, R. (2020). Resistance of Gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules, 25(6), 1340.
12. Brody, A. L. (2008). Packaging by the numbers. Food technology.
13. Cacho, J. I., Campillo, N., Viñas, P., & Hernández-Córdoba, M. (2016). Determination of synthetic phenolic antioxidants in edible oils using microvial insert large volume injection gas-chromatography. Food Chemistry, 200, 249-254.
14. Carocho, M., Barreiro, M. F., Morales, P., & Ferreira, I. C. (2014). Adding molecules to food, pros and cons: A review on synthetic and natural food additives. Comprehensive Reviews in Food Science and Food Safety, 13(4), 377-399.
15. Chenni, M., El Abed, D., Rakotomanomana, N., Fernandez, X., & Chemat, F. (2016). Comparative study of essential oils extracted from Egyptian basil leaves (Ocimum basilicum L.) using hydro-distillation and solvent-free microwave extraction. Molecules, 21(1), 113.
16. Colak, B. Y., Gouanve, F., Degraeve, P., Espuche, E., & Prochazka, F. (2015). Study of the influences of film processing conditions and glycerol amount on the water sorption and gas barrier properties of novel sodium caseinate films. Journal of Membrane Science, 478, 1-11.
17. Dastmalchi, K., Wang, I., & Stark, R. E. (2016). Potato wound-healing tissues: A rich source of natural antioxidant molecules with potential for food preservation. Food Chemistry, 210, 473-480.
18. Duran, M., Aday, M. S., Zorba, N. N. D., Temizkan, R., Büyükcan, M. B., & Caner, C. (2016). Potential of antimicrobial active packaging ‘containing natamycin, nisin, pomegranate and grape seed extract in chitosan coating’to extend shelf life of fresh strawberry. Food and Bioproducts Processing, 98, 354-363.
19. Echeverría, I., López-Caballero, M. E., Gómez-Guillén, M. C., Mauri, A. N., & Montero, M. P. (2018). Active nanocomposite films based on soy proteins-montmorillonite-clove essential oil for the preservation of refrigerated bluefin tuna (Thunnus thynnus) fillets. International journal of food microbiology, 266, 142-149.
20. Emanuel, N., & Sandhu, H. K. (2020). Food Packaging Development: Recent Perspective. Journal of Thin Films, Coating Science Technology and Application, 6(3), 13-29.
21. Esfanjani, A. F., & Jafari, S. M. (2016). Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds. Colloids and Surfaces B: Biointerfaces, 146, 532-543.
22. Fang, Z., Zhao, Y., Warner, R. D., & Johnson, S. K. (2017). Active and intelligent packaging in meat industry. Trends in Food Science & Technology, 61, 60-71.
23. Faustino, M., Veiga, M., Sousa, P., Costa, E. M., Silva, S., & Pintado, M. (2019). Agro-food byproducts as a new source of natural food additives. Molecules, 24(6), 1056.
24. Gharsallaoui, A., Oulahal, N., Joly, C., & Degraeve, P. (2016). Nisin as a food preservative: part 1: physicochemical properties, antimicrobial activity, and main uses. Critical reviews in food science and nutrition, 56(8), 1262-1274.
25. Guzmán, L. E., Acevedo, D., Romero, L., & Estrada, J. (2015). Elaboración de una película comestible a base de colágeno incorporado con nisina como agente antimicrobiano. Información tecnológica, 26(3), 17-24.
26. Han, J. H. (2005). New technologies in food packaging: Overiew Innovations in food packaging (pp. 3-11): Elsevier.
27. Han, Y., Yu, M., & Wang, L. (2018). Physical and antimicrobial properties of sodium alginate/carboxymethyl cellulose films incorporated with cinnamon essential oil. Food Packaging and Shelf Life, 15, 35-42.
28. He, X., & Hwang, H.-M. (2016). Nanotechnology in food science: Functionality, applicability, and safety assessment. journal of food and drug analysis, 24(4), 671-681.
29. Honarvar, Z., Hadian, Z., & Mashayekh, M. (2016). Nanocomposites in food packaging applications and their risk assessment for health. Electronic physician, 8(6), 2531.
30. Hoseinnejad, M., Jafari, S. M., & Katouzian, I. (2018). Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications. Critical reviews in microbiology, 44(2), 161-181.
31. Hossain, M. I., Sadekuzzaman, M., & Ha, S.-D. (2017). Probiotics as potential alternative biocontrol agents in the agriculture and food industries: A review. Food Research International, 100, 63-73.
32. Hrncirova, L., Hudcovic, T., Sukova, E., Machova, V., Trckova, E., Krejsek, J., & Hrncir, T. (2019). Human gut microbes are susceptible to antimicrobial food additives in vitro. Folia microbiologica, 64(4), 497-508.
33. Huang, T., Qian, Y., Wei, J., & Zhou, C. (2019). Polymeric antimicrobial food packaging and its applications. Polymers, 11(3), 560.
34. Irkin, R., & Esmer, O. K. (2015). Novel food packaging systems with natural antimicrobial agents. Journal of food science and technology, 52(10), 6095-6111.
35. Jessica Elizabeth, D. L. T., Gassara, F., Kouassi, A. P., Brar, S. K., & Belkacemi, K. (2017). Spice use in food: Properties and benefits. Critical reviews in food science and nutrition, 57(6), 1078-1088.
36. Jideani, V. A., & Vogt, K. (2016). Antimicrobial packaging for extending the shelf life of bread—A review. Critical reviews in food science and nutrition, 56(8), 1313-1324.
37. Kapetanakou, A., Agathaggelou, E., & Skandamis, P. (2014). Storage of pork meat under modified atmospheres containing vapors from commercial alcoholic beverages. International journal of food microbiology, 178, 65-75.
38. Kapetanakou, A. E., & Skandamis, P. N. (2016). Applications of active packaging for increasing microbial stability in foods: natural volatile antimicrobial compounds. Current Opinion in Food Science, 12, 1-12.
39. Krepker, M., Shemesh, R., Poleg, Y. D., Kashi, Y., Vaxman, A., & Segal, E. (2017). Active food packaging films with synergistic antimicrobial activity. Food Control, 76, 117-126.
40. Laranjo, M., Potes, M. E., & Elias, M. (2019). Role of starter cultures on the safety of fermented meat products. Frontiers in microbiology, 10, 853.
41. Lee, N.-K., & Paik, H.-D. (2016). Status, antimicrobial mechanism, and regulation of natural preservatives in livestock food systems. Korean journal for food science of animal resources, 36(4), 547.
42. Li, J.-H., Miao, J., Wu, J.-L., Chen, S.-F., & Zhang, Q.-Q. (2014). Preparation and characterization of active gelatin-based films incorporated with natural antioxidants. Food Hydrocolloids, 37, 166-173.
43. Liu, Z., Pan, Y., Li, X., Jie, J., & Zeng, M. (2017). Chemical composition, antimicrobial and anti-quorum sensing activities of pummelo peel flavonoid extract. Industrial Crops and Products, 109, 862-868.
44. Lorenzo, J. M., Mousavi Khaneghah, A., Gavahian, M., Marsza?ek, K., E?, I., Munekata, P. E., . . . Barba, F. J. (2019). Understanding the potential benefits of thyme and its derived products for food industry and consumer health: From extraction of value-added compounds to the evaluation of bioaccessibility, bioavailability, anti-inflammatory, and antimicrobial activities. Critical reviews in food science and nutrition, 59(18), 2879-2895.
45. Maisanaba, S., Llana-Ruiz-Cabello, M., Gutiérrez-Praena, D., Pichardo, S., Puerto, M., Prieto, A., . . . Cameán, A. (2017). New advances in active packaging incorporated with essential oils or their main components for food preservation. Food Reviews International, 33(5), 447-515.
46. Marinelli, L., Di Stefano, A., & Cacciatore, I. (2018). Carvacrol and its derivatives as antibacterial agents. Phytochemistry Reviews, 17(4), 903-921.
47. Motey, R., & Lele, S. (2003). Plastic Films for Processed Foods-Special Requirements. Packaging India, 35(5), 19-32.
48. Mustapha, F., Jai, J., Hamidon, F., Sharif, Z. M., & Yusof, N. M. (2017). Antimicrobial agents from Malaysian plants and their potential use in food packaging material. Chemical Engineering Research Bulletin, 57-66.
49. Nazir, F., Salim, R., Yousf, N., BashirM, N. H., & Hussain, S. (2017). Natural antimicrobials for food preservation. J Pharmacogn Phytochem, 6(6), 2078-2082.
50. Nerín, C., Tovar, L., & Salafranca, J. (2008). Behaviour of a new antioxidant active film versus oxidizable model compounds. Journal of food Engineering, 84(2), 313-320.
51. Otoni, C. G., Espitia, P. J., Avena-Bustillos, R. J., & McHugh, T. H. (2016). Trends in antimicrobial food packaging systems: Emitting sachets and absorbent pads. Food Research International, 83, 60-73.
52. Padrao, J., Gonçalves, S., Silva, J. P., Sencadas, V., Lanceros-Méndez, S., Pinheiro, A. C., . . . Dourado, F. (2016). Bacterial cellulose-lactoferrin as an antimicrobial edible packaging. Food Hydrocolloids, 58, 126-140.
53. Pangestuti, R., & Arifin, Z. (2018). Medicinal and health benefit effects of functional sea cucumbers. Journal of traditional and complementary medicine, 8(3), 341-351.
54. Park, K. M., Yoon, S.-G., Choi, T.-H., Kim, H. J., Park, K. J., & Koo, M. (2020). The Bactericidal Effect of a Combination of Food-Grade Compounds and their Application as Alternative Antibacterial Agents for Food Contact Surfaces. Foods, 9(1), 59.
55. Persico, P., Ambrogi, V., Carfagna, C., Cerruti, P., Ferrocino, I., & Mauriello, G. (2009). Nanocomposite polymer films containing carvacrol for antimicrobial active packaging. Polymer Engineering & Science, 49(7), 1447-1455.
56. Pisoschi, A. M., Pop, A., Georgescu, C., Turcu?, V., Olah, N. K., & Mathe, E. (2018). An overview of natural antimicrobials role in food. European Journal of Medicinal Chemistry, 143, 922-935.
57. Quintavalla, S., & Vicini, L. (2002). Antimicrobial food packaging in meat industry. Meat science, 62(3), 373-380.
58. Quinto, E. J., Caro, I., Villalobos-Delgado, L. H., Mateo, J., De-Mateo-Silleras, B., & Redondo-Del-Río, M. P. (2019). Food safety through natural antimicrobials. Antibiotics, 8(4), 208.
59. Quirós-Sauceda, A. E., Ayala-Zavala, J. F., Olivas, G. I., & González-Aguilar, G. A. (2014). Edible coatings as encapsulating matrices for bioactive compounds: a review. Journal of food science and technology, 51(9), 1674-1685.
60. Raut, J. S., & Karuppayil, S. M. (2014). A status review on the medicinal properties of essential oils. Industrial Crops and Products, 62, 250-264.
61. Ribeiro-Santos, R., Andrade, M., & Sanches-Silva, A. (2017). Application of encapsulated essential oils as antimicrobial agents in food packaging. Current Opinion in Food Science, 14, 78-84.
62. Risch, S. J. (2009). Food packaging history and innovations. Journal of agricultural and food chemistry, 57(18), 8089-8092.
63. Robertson, G. L. (2016). Food packaging: principles and practice: CRC press.
64. Rollini, M., Nielsen, T., Musatti, A., Limbo, S., Piergiovanni, L., Hernandez Munoz, P., & Gavara, R. (2016). Antimicrobial performance of two different packaging materials on the microbiological quality of fresh salmon. Coatings, 6(1), 6.
65. Sakkas, H., & Papadopoulou, C. (2017). Antimicrobial activity of basil, oregano, and thyme essential oils. Journal of microbiology and biotechnology, 27(3), 429-438.
66. Sanches-Silva, A., Costa, D., Albuquerque, T. G., Buonocore, G. G., Ramos, F., Castilho, M. C., . . . Costa, H. S. (2014). Trends in the use of natural antioxidants in active food packaging: a review. Food Additives & Contaminants: Part A, 31(3), 374-395.
67. Santos, J. C., Sousa, R. C., Otoni, C. G., Moraes, A. R., Souza, V. G., Medeiros, E. A., . . . Soares, N. F. (2018). Nisin and other antimicrobial peptides: Production, mechanisms of action, and application in active food packaging. Innovative Food Science & Emerging Technologies, 48, 179-194.
68. Santos, M., Martins, S., Veríssimo, C., Nunes, M., Lima, A., Ferreira, R., . . . Ferreira, M. (2017). Essential oils as antibacterial agents against food-borne pathogens: Are they really as useful as they are claimed to be? Journal of food science and technology, 54(13), 4344-4352.
69. Shamaei, S., Seiiedlou, S. S., Aghbashlo, M., Tsotsas, E., & Kharaghani, A. (2017). Microencapsulation of walnut oil by spray drying: Effects of wall material and drying conditions on physicochemical properties of microcapsules. Innovative food science & emerging technologies, 39, 101-112.
70. Siripatrawan, U., & Vitchayakitti, W. (2016). Improving functional properties of chitosan films as active food packaging by incorporating with propolis. Food Hydrocolloids, 61, 695-702.
71. Song, X., Zuo, G., & Chen, F. (2018). Effect of essential oil and surfactant on the physical and antimicrobial properties of corn and wheat starch films. International journal of biological macromolecules, 107, 1302-1309.
72. Trinetta, V., & Cutter, C. (2016). Pullulan: A suitable biopolymer for antimicrobial food packaging applications Antimicrobial Food Packaging (pp. 385-397): Elsevier.
73. Ulbin-Figlewicz, N., Zimoch-Korzycka, A., & Jarmoluk, A. (2014). Antibacterial activity and physical properties of edible chitosan films exposed to low-pressure plasma. Food and Bioprocess Technology, 7(12), 3646-3654.
74. Valdés, A., Ramos, M., Beltrán, A., Jiménez, A., & Garrigós, M. C. (2017). State of the art of antimicrobial edible coatings for food packaging applications. Coatings, 7(4), 56.
75. Vermeiren, L., Devlieghere, F., van Beest, M., de Kruijf, N., & Debevere, J. (1999). Developments in the active packaging of foods. Trends in food science & technology, 10(3), 77-86.
76. Vilela, C., Kurek, M., Hayouka, Z., Röcker, B., Yildirim, S., Antunes, M. D. C., . . . Freire, C. S. (2018). A concise guide to active agents for active food packaging. Trends in Food Science & Technology, 80, 212-222.
77. Wagenlehner, F. M., Lichtenstern, C., Rolfes, C., Mayer, K., Uhle, F., Weidner, W., & Weigand, M. A. (2013). Diagnosis and management for urosepsis. International Journal of Urology, 20(10), 963-970.
78. Wen, P., Zhu, D.-H., Wu, H., Zong, M.-H., Jing, Y.-R., & Han, S.-Y. (2016). Encapsulation of cinnamon essential oil in electrospun nanofibrous film for active food packaging. Food Control, 59, 366-376.
79. Wyrwa, J., & Barska, A. (2017). Innovations in the food packaging market: active packaging. European Food Research and Technology, 243(10), 1681-1692.
80. Yu, S.-H., Hsieh, H.-Y., Pang, J.-C., Tang, D.-W., Shih, C.-M., Tsai, M.-L., . . . Mi, F.-L. (2013). Active films from water-soluble chitosan/cellulose composites incorporating releasable caffeic acid for inhibition of lipid oxidation in fish oil emulsions. Food Hydrocolloids, 32(1), 9-19.
81. Zahra, S. A., Butt, Y. N., Nasar, S., Akram, S., Fatima, Q., & Ikram, J. (2019). Food packaging in perspective of microbial activity: a review. Journal of Microbiology, Biotechnology and Food Sciences, 2019, 752-757.
82. Zanetti, M., Carniel, T. K., Dalcanton, F., dos Anjos, R. S., Riella, H. G., de Araujo, P. H., . . . Fiori, M. A. (2018). Use of encapsulated natural compounds as antimicrobial additives in food packaging: A brief review. Trends in Food Science & Technology, 81, 51-60.
83. Zhou, G., Xu, X., & Liu, Y. (2010). Preservation technologies for fresh meat–A review. Meat science, 86(1), 119-128.


How to Cite

Ali Raza Ishaq, Fatima Noor, Ayesha Noor, Iqra Farzeen, Iqra Afzal, & Muhammad Ilyas. (2020). Outline of Animals and Plants-Based antimicrobial agents (NAA) in Antimicrobial food packaging (AFP): A new paradigm in food industry. International Journal of Agriculture, Biology & Environment (e-ISSN 2582-6107) DOI: 10.47504/IJAGRI, 1(2), 4–15. https://doi.org/10.47504/IJAGRI.2020.5115